圆法的全称为“哈代·李特伍德圆法”
,不但是研究哥德巴赫猜想的重要工具,更是解析数论中常备用到的重要工具。
而关于这个工具的发明,并非是在哥德巴赫问题上。
现在数学界普遍认为的观点是,这一概念是哈代在与拉马努金研究“整数拆分的渐近分析”
问题中最先出现的,而后在哈代与李特伍德合作研究华林问题时,被补充完整。
如今,作为研究哥德巴赫猜想的重要工具,这项工具已经被后世的数学家发扬光大。
比如站在讲台上的赫尔夫戈特,便是当今数论界中,圆法理论的大牛。
“……哥德巴赫猜想的内涵为任意大于2的偶数都可写成两个质数之和,我们姑且称之为猜想a。”
“……由于奇数减去奇素数是一个偶数,猜想a认为任何偶数都等于两个素数之和,故而用猜想a可得推论猜想b,任意大于9的奇数都可以写成三个奇素数之和。”
开场白说到这里,赫尔夫戈特顿了顿,继续说。
“而我所讲述的‘圆法’,便是证明其哥德巴赫猜想的弱猜想,即猜想b!”
猜想a成立,猜想b一定成立。
但反过来,却不行。
至于为什么,这涉及到一个逻辑数学中很有趣的问题。
用初等数学难以描述,但用描述性的语言来解释的话,就是“任意大于9的奇数与奇素数之和”
所组成的集合,与“任何偶数”
这一集合不等价,且交集中的所有元素无限多,亦不可穷举证明。
其实抽象的来看,无论是圆法的“偶数集合”
还是筛法的“1+1形式”
,大家都是半斤八两,都差最后的临门一脚。
这个距离可能是隔着一条河,也可能是两山对望。
简短的开场白之后,赫尔夫戈特也不废话,在白板上写下了一行算式。
【……当2||n,有r3(n)=12n(n2n3)n(1-1(p-1)2)n(1+1(p-1)2),(1+o(1))】
看到这行算式的瞬间,陆舟眼睛微微一亮。
这行表达式倒不是老先生随手乱写的,正是哈代与李特伍德这两位数论界的大佬,在1922年那篇论文中提出的众多表达式之一!
在研究孪生素数猜想的时候,陆舟正好查阅过那篇文献,甚至对其中的部分结论进行过引用。
也正是因此,他对这个可以说是印象深刻了。
看来这报告会,有点意思啊。
站在白板前的老头一言不发,继续在拿着记号笔唰唰唰地写着。
会场内鸦雀无声。
不只是陆舟听的很认真,就连其它到大佬们也听的很认真地在看。
术业有专攻,即便是大佬,也不可能在一瞬间就深入到别人的领域中。
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
1v1甜宠文商锦瑟在商华年眼中就是个不折不扣的渣女,反之亦然。一场车祸,两条人命。共赴地府,却在阎王口中得知,他们有十世情缘。商锦瑟商华年你怕是没睡醒。阎王软硬兼施,苦口婆心,把俩人...
...
养了自己十几年的父母,居然不是亲生的,而这一天,亲生父亲带着亿万家产来接自己...
建个群,全订粉丝群131341657来时无迹去无踪,大唐贞观寄此身。漫随贫富皆欢乐,混作长安一痴人。...
遍及整个世界的二战已经进入尾声,大英帝国的衰落却才刚刚开始,美苏憧憬着未来的光辉岁月,知道破落贵族已经不是自己的阻碍。我并不同意他们的想法,可先拆了英属印度也并不全是坏事。...
康熙三十年大选,乌林珠身为乌拉那拉家的嫡女,进宫选秀。目睹了四阿哥的热门抢手,各种秀女争奇斗艳后,她默默地同情了一把未来的四福晋,做等撂牌子回家。谁知道等来的却是她即将成为那倒霉的四福晋的暗示。没等...